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Abstract - The dynamic response of porous media and packed beds systems to an arbitrary time varying 
inlet temperature is investigated analytically. 

A two phase model is developed taking rigorously into account the fluid to solid heat capacity ratio. 
At first the initial value problem is solved, including initially non-uniform spatial temperature 

distributions. 
Then a general solution, relevant to operational modes in which the initial conditions are forgotten, is 

proposed. 
Some graphs are shown for simple situations such as delta, step, ramp response (for the initial value - _ 

problem) and periodic sinusoidal inlet temperature. 

ratio of the total wetted contact area 
between solid and fluid to the total vol- 
ume of the packed bed ; 
specific heat ; 

w, 
WOl 
@, 

Fourier transform variable; 
dimensionless angular frequency; 
temperature. 

dimensionless inlet fluid temperature; 
heat-transfer coefficient between fluid and 
solid; 
imaginary unit ; 

Subscripts 

; 
inlet; 
fluid ; 

s, solid. 

thermal conductivity (including, for the 
fluid, the dispersion due to the flow 
through the porous medium); 
Laplace transform variable; 
dimensionless time defined in equation 

Pa); 
mean fluid flow velocity; 
dimensionless spatial co-ordinate defined 
in equation (2b); 
fluid to solid heat capacity ratio; 
first kind modified Bessel functions of 
order 0 and 1; 

Su~rsc~pts 

G, Green’s function; 
R, ramp ; 
S, step ; 

Laplace or Fourier transform. 

INTRODUCTION 

numerical constant defined in equations 

(3b); 
dimensionless temperature; 
Heaviside step function. 

PROBLEMS related to the dynamic behaviour of systems 
have application in many technical fields and are 
becoming of increasing importance. The dynamic 
response of the temperature of a fluid flowing in 
porous media come within such problems [l]. 

Greek symoors 

4 Dirac delta function ; 
6 void fraction ; 

2, 
spatial co-ordinate; 
initial temperature distribution; 

% time ; 
PS density ; 

In engineering and physics there are several appli- 
cations of flow in porous media, such as packed 
columns in heat and mass transfer in separation 
processes in the chemical industry, regenerative heat 
exchange in the steel industry, power transient in 
nuclear reactors, petroleum and geothermal processes, 
groundwater flow and dispersion in soils, industrial 
filtration, thermal energy storage [2-51. 

This latter application has been recently emphasized 
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with particular attention to the storage of thermal 

energy derived from solar energy conversion systems. 
In this case a heated fluid flows from the solar 
collectors into a bed composed of graded washed 

rocks, where thermal energy is transferred to the rock. 
The recovery of this stored energy is usually obtained 
by reversing the flow in the bed. 

The transient response ofa fluid in porous media has 
been already investigated with the aid of computing 

machines [6], particularly if a great many different 
cases are to be studied. 

The goai of this work is to derive a quite general 

analytical solution mainly referred to solar storage 
systems; it will be a useful tool and a helpful check 
solution in order to study the problem. 

For the mathemati~a1 treatment of heat and mass- 

transfer processes in packed beds through which a 
fluid is flowing there are two models : the group of one 
phase models, in which the bed is approximated by a 
quasi-holnogeneous medium, and the group of two 
phase models in which both phases exchange heat. 

TWO phase models are usually obtained by elim- 

inating the axial conduction terms in both phases 
[7-91; they are clearly more realistic and will be here 
adopted. 

The literature on packed beds is very extensive, 
frequent summaries are published [IO], flow modell- 
ing, pressure drop, friction factor, porosity and per- 
meability are investigated and some empirical for- 

mulas are proposed [11Li3]. 
However analytical works are mainly concerned 

with single phase models describing a gaseous phase, 

whose volumetric heat capacity is neglected [l&16], 
leading to the infinite Ntu (number of heat-transfer 

units) model. The porous medium here considered 

consist of a volume filled with discrete solid particles, 
each in physical contact with neighboring particies; a 
fluid flows through the bed in the void spaces between 
the particles. The flow is a combination of channel 

flow, accelerating, decelerating and stagnation flow; 
the transport phenomena are described in terms of 

volume averages in one geometric spatial dimension 

(the direction of Row). Attention is paid on the 
fluid--solid volume heat capacity ratio, generally ig- 
nored because very close to zero, being air the usual 

fluid and rock the usual solid. 

Because of the importance assumed by new systems 

proposed in solar energy storage [17--181 (mainly 
packed beds with water as a fluid, storage in adsorbent 
materials, packed beds of iron spheres with liquid 
sodium coolant for solar central receiver power plants) 
it appears greatly significant to carry on a parametric 
study with respect to the fluid-solid volume heat 
capacity ratio. which can be quite different from zero in 

these new situations. The analytical solutions prop- 
osed are not restricted to the case of a bed with uniform 
initial temperature, but hold even for a spatially non- 
uniform initial temperature distributions of both ff uid 
and solid phases, such as expected to occur in most 
operational modes (charging and discharging). So- 

lutions of this kind are not yet available in the 
specialized literature, at least to our knowledge [Sj 

S-FA’IEMEKI‘ OF THE TWO PHASE PROBLEM 

The analysis of a packed bed by the one dimensional 
two phase model can be performed on the basis of a 

simple therma energy balance for each of the Ruid and 
solid phases. When the Huid is in plug flow. rho 
physical parameters are constant, losses to the sur- 

roundings and internal heat generation are absent, one 
ends up with the set of two coupled partial differential 
equations : 

to be integrated upon suitable boundary and initial 
conditions. Associated to equations (1) is the assump- 
tion of negligible radiation effects. The space and time 

inde~ndent variables, 5 and I?, range from 0 to the bed 
length L, and from 0 to 7 . respectively. The other 
symbols are fisted in the nomenclature, and have the 

usual meaning. The characteristic times pfc&t:a and 

p&l - c)!ha, as well as the ~hara~ter~sti~ length 
~~c+i/hir arise from equations (1) in a natural way. 

We introduce thus the dimensionless space and time 
variables 

(tbi 

what imply that the fluid relaxation length and the 
solid relaxation time are taken as new space and time 
unity. In this way three dimensionless parameters 

appear, namely 

s i: 
(,,CJl. 

&c’&(I - 1:) 

i:k&r 

Kf = (pJc,I:u)2 
K _I !! .2?k_shu 

s (pr’.p? 

The governing equations become 

(3a) 

(3b) 

(4b) 

In the sequel we will disregard K, and K, but take 
rigorously into account the parameter z which, like the 
previous ones, is usually neglected because very small, 
for air rock beds. The number z represents the fluid to 
solid heat capacity ratio, or the ratio of the fluid 
relaxation time to the solid relaxation time and can be 
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significant for different kinds of packed beds. A 
complete analytical solution can be achieved in this 
case for several meaningful physical situations. In 
particdar we will consider the initial value problem 
and the periodic steady state problem, for an arbitrary 
prescribed fluid inlet temperature @,(O, t). The analyti- 
cal solution of the complete system (4) could be carried 
out in principle along the same line without particular 
difficulties, but it turns out to be very heavy and 
awkward, so that its effectiveness, in comparison to a 
numerical sotution, would perhaps become question- 
able. An analytical approximate approach, based on a 
perturbation technique with respect to the small 
parameters z, K, and K,, might deserve further 
investigation ; this will be, however, object of future 
work. 

THE INITIAL VALUE PROBLEM 

When axial conduction is neglected in (4), only the 
initial temperatures 8&x, 0) and 6,(x, 0) and the fluid 
inlet temperature B,(O, t) are to be given. If Be and 6, 
represent some characteristic value for the initial and 
inlet condition respectively, the natural way to adim- 
ensionalize temperatures is then 

T 
6 -8, 

f 
= Of - @o 

ei 

T, = -I__, 
ei 

(5) 

so that we are left with 

ar 
---F = Tf - T,, at 

to be integrated upon Tf (x, 0) = (P,(x), T,(x, 0) = 
c#&x) and Tf (0, t) = f(t), where cbr, #, andf follow 
from an appropriate specialization of equations (5). The 
characteristics [ 191 of the system (6) of two first order 
partial differential equations are the straight lines x = 
const. and t - zx = const. in the x, t plane, cor- 
responding to 5 = const. and g - uy = const. in the 
original 5, q plane; the propagation speed u is thus 
equal to the velocity of the flowing fluid particles. 

The system (6) can now be solved via a Laplace 
transform technique with respect to the t variable. We 
get first 

aTf 
dx + (1 + zfJ)7j (xt PI - T&x, P) = .@f (4 

CP + WAX, P) - Tf(Xt P) = W), 

from which, by the convolution theorem [20] 

T&x, r) = #,(x) exp(-r) 

(7) 

+ 
s 

t 
exp[ - (t - r)] T, (x, z) dr. (8) 

0 

In other words, the solid phase temperature is contri- 
buted by the exponential time decay of the initial 
temperature plus a weighted average of the history 

(from the beginning to the actual time) of the fluid 
temperature, with an exponential “memory”. The 
system (7) yields then the first order differential 
equation 

which can be solved explicitly in the form 

i”f (x* P) =Jo)T: (x* P) + x 
* 

X 

s 
“T; (X-Y, P)$f (Y)dY 

0 

+ 

s 
* ?;,“(x-Y. PMAYMY 

0 

W) 

i”,(x* p) = f(p) fF:(x, p) + z 

s 

* 

X “T,G(x -Y, PM/ (y)dy 
0 

where 

Fy (x, p) = exp( - x)exp( - rpx)expExl(p + l)] 

7:(x, p) = i?;” (x, P)/(P + 1) 01) 

F-:(x, d) = q (x, p)/(p+ 1j2 + 6(x)/o, + 1). 

Again the convolution theorem provides now the final 
results 

s 

f 

Tf(Xt d = T/” (x, t - r)f(r)dr + z 
0 

s 

* 

X T,” (X--Y> +#J (YMY 
0 

s 

x 

+ T,G(x -Y, GA,(y)dy WI 
0 

s 

t 

T,(x, t) = 7-:(x, t - ~)f(r)dr + z 

0 

s 

x 

X T,G(x - Y v WI (y)dY 
0 

.i 

x 

+ 7-g (X-Y‘ t)~~(y~y, (13) 
0 

so that the solution is completely determined in a 
closed analytical form, once the Green’s functions T/" , 
Tf and Tz are known. We remark that all of them 
have a clear physical meaning, since for instance Ty (x, 
t) is, in the dynamical system, the fluid response to an 
impulse inlet temperature [f(t) = s(t)] for an initially 
cold bed (+J = Cp, = 0). For an arbitrary inlet tem- 
peraturef(t) in a cold bed, the fluid temperature would 
be given by the first integral in the RHS of equation 
(12), which may be physically interpreted in the same 
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way as equation (8), Ty (x, t-r) playing the role of a 
space dependent weighting factor of the inlet im- 
pressed datum& A similar discussion is in order for 
7$(x, t), which represents both the solid response to an 
impulse inlet temperature for an initially cold bed, and 
the fluid response to a delta-like initial solid tempera- 
ture for a cold initial and inlet fluid. In the latter case 
the relevant convolution integral for an arbitrary solid 
initial temperature [the third integral in equation (12)] 
involves of course the space variable only. T,zi repre- 
sents finally the solid response to a delta-like initial 
solid temperature for a cold initial and inlet fluid. It is 
remarkable that zT7 and zT$ provide also the C&-een’s 
function with respect to the initial fluid temperature, 
for the fluid and solid phase respectively. It can be 
noticed also that all contributions to T, and 7, at i and 
x come from times 7 < t. and from points r < Y. as 
physically expected. 

The actual inversion of equations (11) in order to get 
TF , Tf and Tz, to be used in (12) and (13) can be 
performed analytically, resorting to some properties of 
Laplace integrals [20]. The result reads as 

T,” (x, r)=cS(r - zx)exp( - x) + U(t - z.x)exp( - x) 

xexp[ -(t-ZX)] ;& c 1 
I.‘? 

IrC2x “Z(t-zX)r ‘1 (14) 

Tz(x, t) = U(t - z.x)exp( - x) 

x exp[ - (t-zx)]10[2x”Z(t-zs)f ‘“1 (15) 

Tz(x, t)=G(x)exp[ -(t-2x)] + U(t-zx)exp(-r) 

t-_Zx Ii2 

x exp[-(t--2x)] ~ 
i 1 !,[2x’!~(t-zX)“Z], (16) 

x I 

where U is the unit step function, and I, the nth order 
modified Bessel function of the first kind [21]; the 
explicit dependence on the characteristics x and t - zx 
is evident, as well as the occurrence of a travelling 
wave, with a speed l/z (corresponding to a physical 
speed u). 

The effects of z > 0 are properly accounted for in 
equations (14)-(16). The smaller z, the faster the 
propagation; the propagation speed tends to infinity 
for z -+ 0. In such a case it is easily seen from (12) and 
(13) that the initial fluid temperature does not affect T, 

and T,, in agreement with the governing equations, (6) 
where the initial datum T, (x, 0) is not required when z 
= 0, since the time derivative of the fluid temperature 
is canceled. 

In general, an inspection of the Green’s functions 
(14)-(16), already gives an idea of the space and time 
behaviour of T, and T,, and of the effects of the dataf, 
S#J, and 4,. In particular the asymptotic behaviour of 
the Bessel functions determines the non-exponential 
time decay of the thermal effects of the initial tempera- 
tures tp, and cfi,. We remark that 4, alIects however TI 
and T, even for t > zx even though the initial fluid has 
been already removed from the points y of the bed with 
0 < y < x; the initial fluid contributed in fact to 
heating the solid phase before flowing away. 

The general solution to the initial value problem is 
given however by equations (12)--( 16) and is in order 
for any data .f(t), $r (x) and CpJx). The presented 
numerical applications refer to an equilibrium steady 
state initial condition, in which 0, (x* 0) and 0,(x, 0) 
must be equal to a same constant, so that both 4j, and 
4S may be taken equal to zero in force of equations 
(5). The solution may then be rewritten as 

T/(x, r)=U(t-zx)exp(-.x)jj(t-~u)+s~~ 

J 

I--zx 
X r-’ ‘exp(-r)1,[2(xT)’ 2y‘(t-z~x--r)d~~ (1’7) 

0 

T&Z, t) = r;jr - zx)exp( -x) 

1 

l-=x 
X expj -z)l,[Z(.xr)“‘]f’(t --zs--r)d~. (18) 

,. 0 

Other meaningful physical situations (e.g. charging of 
a cold bed, followed by recovery with a cold fluid, the 
fluid speed being reversed in the latter operation) 
could be treated as well, but are omitted for the sake of 
brevity. Equations (17) and (18) include as particular 
cases the most common and useful response to the inlet 
temperature. For instance we can find, after some 
manipulation 
(a) step response 

7-?(x, f) = U(f-zx)exp(-x) 

x {exp[- (t - zx)]f,[Zx’ ‘Z(t-.zx )I”] 

+ 
I 

I_-zX 
exp( - r)1,(2x’ ‘rr ‘)d 7c) 

0 

T:(x, r) = U(t-zx)exp(-x) 

s 

,-*I 
X e?rp(-t)l,(2x”2r’~z)d Z. 

0 
(19) 

(b) ramp response 

T/R (x, t) = U(t - zx)exp( - xi 

x {(l+t-ZX) 
I 

“~~~exp(-~~~o(2x1’2r”z)d~ 
0 

T,R(x, t) = U(t - zx)exp( -x) 

I 

I--2+ 
x {(t - zx) exp( --~)1,(2x~~~r”~)dz 

0 

.r 

f_-ZX 
- zexp( ---T)I~(~x~~~~ ‘) d7). 

0 
(20) 

Gf course equations (14) and (15) themselves provide 
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the impulse response for fluid and solid respectively. 
Figure 1 shows the function Tfc vs f for different 

values of the co-ordinate x and z = 1. Each tempera- 
ture evolution consists of a delta-like wave front, 
followed by a peak, which is more and more flattened 
and delayed as x increases. Figure 2 reports the spatial 
solid temperature distribution for different values of 
time and z. The sudden rise in solid temperature, due to 
the impulse inlet fluid temperature, is flattened when r 
increases. It is remarkable the important role played 
by Z; when z decreases the solid temperature is shifted 
and flattened, and tends to a more uniform distri- 
bution. The values of z quoted in Fig. 2 refer appro- 
ximately to water (z = l), iron-sodium (z = 0.3) and 
air (z = 0.001) packed beds, respectively. 

The step response of fluid temperature is shown in 
Fig. 3 for different values of x and z. The fluid 
temperature tends to a steady state situation, with a 
time lag increasing as x or 2 increase. 

Figure 4 shows the step response temperature 
distribution for both fluid and solid. The packed bed 
temperature tends to a steady state value; when z 
increases the distribution is less uniform and the 
differences between fluid and solid temperatures 
increases. 

The ramp response of fluid temperature is shown in 
Fig. 5, for different values of x and z. Of course the 
tem~rature rise is faster near the inlet section and for 
small values of z. 

Figure 6 shows the ramp response temperature 
distribution for fluid and solid ; analogously to Fig. 4, 
the more z increases the less the distribution is uniform 
and the more the difference Tf-Ts is noticeable. 

Tf 

O.OE 

O.OE 

0.04 

0.02 

0 

I- 

i- 

0 

x=10 

_i r 
20 

x=20 

~ 

Figures 3 and 4, for z = 0.001, are nearly similar to 
those obtained by Riaz [ 161 by solving a single phase 
model (i.e. z = 0). The solutions here proposed exhi- 
bit clearly how the temperature responses are affected 
by :; they also display the temperature difference 
between fluid and solid, quite neglected in single phase 
models. 

REGIME SITUATION 

In many practical applications the temperature of 
the fluid entering the packed bed is subjected to 
periodic variations, which take place repeatedly for a 
very long time during the steady state operation of the 
system. As an example it is sufficient to recall here a 
solar energy storage plant. Such a situation can not be 
described in the frame of an initial value problem like 
in the previous section; the relevant results could 
instead be exploited for the analysis of the transient 
regime when operation is started. 

The time variable must be taken now running from 
-a to +a~;, and the initial conditions must be 
considered as completely forgotten. Let the inlet fluid 
temperature be given by 0, (0, t), - cz < t < co, and ei 
be once more a characteristic value. Let temperatures 
be adimensionlized according to equations (5) with 8, 
= f$; then we have to solve again the system (6), with 
---ix) < t < co, and Tf (0, t) = g(t) = [f?f (0, 
t) - ~i)/~~ We take now an exponential Fourier 
transform, of complex parameter o, supposing that a11 
transforms exist, at least in distributional sense. The 
function g(t) is otherwise arbitrary; later on it will be 
specialized as a periodic function. The transformed 
system (6) reads as 

Z=l 

6b 8b t 160 

RG. 1. Fluid response to an impulse inlet temperature for different values of X. 
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FIG. 2 Solid temperature distribution for different values of r and I, due to an impulse inlet fluid temperature 

0.06 

0 

2b 4b 6b sb t 160 0 

1 

TfJTS 

0.75. 

0.50. 

0.25. 

0 

FIG. 3. Fluid step response for different values of x and z. 

0 5 10 15 20 25 x 30 

0.75- 

0.50- 

0.25 - 

FIN;. 4. Fluid and solid temperature distributions for different values of ! and z, due to a step inlet fluid 
temperature. 
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80- 

80- 

FIG. 5. Fluid ramp response for various values of x and .z. 

oIK-1 Cl 
I I I i 

0 5 10 15 20 25 x 30 

FIG. 6. Fluid and solid temperature distributions for different values of r and z, due to a ramp inlet fluid 
temperature. 

aT, 
K + (1 + ioz);?; (x, Co) = T,(x, w) 

(1 + iw)Ts(x, co) = T/(x, co), (21) 

from which the solid temperature can be eliminated as 

s 

1 
T&G t) = exp[-(t-r)]T,(x, r)dr (22) 

-m 

which is the present counterpart to equation (8). From 
(21) there follows the first order differential equation 

a'i; 
ax+(l+iWz - & 

> 
F&w) = 0, (23) 

which yields 

Ff (x, w) = g’(w)exp 
[( 

1 
- 1 + iwz - - 

1 + iw >I x 

F’,(x, w) 

= G(w)exp 
[( 

- 1 + ioz - (1 + iw). (24) 

Now it easily verified that [20] 

= T%,O, (25) 

so that we may write 

s 

m 
TI (x, t) = T,G(x, t - r)g(t& (26) 

--Lo 
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rx 

T,(x, t) = J Tf’(x, t - z)g(r)dr. (271 
--1 

Equations (26) and (27) are the solution to our 
problem for a general inlet condition g. They look like 
equations (12) and (13) (with vanishing initial con- 
ditions), but the T integration runs now from - 1. to 
+ rlc. According to equations (25) however, the delta 
and step function in TF and 7’: cut off the integration 
in (26) and (27) for T ) f - zx, so that only the history 
of inlet tem~rature, untii the time t - zx, cont~butes 
to the temperatures at s and I, zx being just the 
traveling time up to the point X. The general solution 
may also be rewritten as 

Tf (x, t) = exp( -.u)y(t - XC) 

+ exp( -x)x”* 
S’ 

7-I 2exp( - 5) 
0 

x I,[Z(~z)“~]g(r-zx.-t)dr (28) 

r 

1 
T,(x, t) = exp( - x) exp( - t) 

.0 

x Ia[2(x~)“2]g(t - zx - z)d7, (29) 

and of course it tends to coincide with the solution to 
the initial value problem, equations (17) and (18), when 
g = fand t -+ + x. 

Let us now consider the case of a periodic g. If v 
denotes the given frequency, g may be expanded into 
its trigonometric Fourier series using sine and cosine 
functions with frequency nv, n = 1,2,. . ., the expansion 
being convergent in the norm of the Wilbert space L, 
over the period l/v. Due to the linearity of the problem 
and the L2 convergence, we may apply the Fourier 
transform procedure term by term, and achieve the 
final result by superposition. Let us consider thus 

g(t) = sinco,t, w0 > 0, (30) 

which implies 

&!I) = ; [6(w - W,) - 6(u + w,)]. (31) 

The final inversion of equations (24) yields, when 
equation (31) is used 

TJx, t) = exp[ - &x/f 1 + CL&] 

attenuated and the phase linearly delayed, while also a 
cosinusoidal term arises in the solid response. 
If we consider also 

g(t) = cos wgr IU” 3 0. 

we get analogously 

T, (x, t) = exp[ -c.&/(l+~~)] 

(33) 

Figure 7 shows the fluid response, over a period, to a 
cosinusoidal inlet temperature, for 3 = 0.001 ; as 
predicted the amplitude damping and phase shifting 
increase for increasing distance from the inlet section. 

When deaiing with a general periodic function g(r). 
with a given angular frequency ~t)~, it proves con- 
venient to choose as Bi the average inlet temperature 
over the period, so that the mean value of g over the 
period 2n/~0, vanishes. Bearing in mind the above 
results and setting 

g(t)cos(no,t)dt, 

for n = I,&. . . , the bed response to the periodic inlet 
tem~rature g(t) is given by the infinite series 

T/(X, t) = C (2, exp[ - n’wgx/( 1 + nLO$)] 
n=, 

+ C b, exp[ - n2togx/( 1 + n”w~)] 
n=, 

T,(x, t) = {exp[-og x/(1 +&)]/(I +&)) 

iH 1 
x sin tug t - z.x - --‘i_x 

l-l-w, iI 

1 
-fiI&OS wg f--3X- 

I ( 
-2” 

1 -t COQ I1 

The nature of the bed response to a sinusoidal inlet 
temperature is clearly understood by inspection of 
(32): in particular the amplitude is exponentially 

Of course T, and T, are still, for 
functions of i with the same angular frequency (I),,, and 
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FIG. 7. Fluid response to a cosinusoidal inlet temperature for different values of X. 

with vanishing mean value over the period. The shape 
will depend on x. The explicit dependence on the 
characteristics x and t - zx is again evident. 

The application of this method can be very interest- 
ing in the estimation of the fraction of the heating load 
supplied by solar energy in systems including packed 
bed storage. Recently Drew and Selvage [22] have 
proposed a procedure for solar storage design, based 
on a sinusoidal form of radiation, temperature and hot 
water demand; through equations (36) a similar 
procedure can be developed and generalized for any 
periodic form of packed bed inlet temperature, which 
can be given as a periodic forcing function. 

We remark finally that a series expansion for T, and 
I; equivalent to (36), can be obtained by using the 
trigonometric series expansion for g directly into 
equations (28) and (29). The occurrence of a series 
representation rather than an integral representation 
is in agreement with the periodic nature of the 
problem. 
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364 GIAMPIERO SPWA and MARCO SPI(;A 

UNE RESOLUTION RIGOUREUSE D’UN MODELE DIPHASIQUE DE TRANSFERT 
THERMIQUE DANS LES MILIEUX POREUX ET DANS LES LITS FIXES 

R&urn& ~ On &die analytiquement la r6ponse dynamique des milieux poreux et des Iits fixes i me 

temperature d’entrke variant avec ie temps. Un modile diphasique est construit pour prendre en compte le 

rapport des capacitCs thermiques du fluide et du solide. Tout d’abord le problt?me de valeur initiale est r&solu 
en incluant des distributions spatiales de temperature non uniformes. Puis une solution g&n&ale est 
proposke, relative & des modes OpCrationneIs dans lesquels Ies condition initiaies sont oublibs. On donne 
quelques graphes pour des cas simples tels que rtponses i delta, dchelon, rampe (pour des problimes B valeur 

initiale) et une tempdrature d’entrCe pCriodique sinuso’idale. 

EINE STRENGE LdSLJNG FUR DAS ZWEIPHASEN-WARMEiiSERGANGS-MODELL IN 
POROSEN MEDIEN UND FESTBETTEN 

Zusammenfassung-Das dynamische Verhalten von porijsen Medien und Festbettsystemen bei willkiirlich 
vednderlicher Ejn~ittstem~ratur wird analytisch hehandelt. Ein Zwejphasenmodell wird entwickelt, das 
das VerhIlrnis der spezifischen WrmekapazitCten von Fliissigkeit und Festkiirper streng beriicksichtigt. 
ZunPchst wird das Anfangswertproblem unter Beriicksichtigung rlumlich ungleichfiirmiger 
Temperaturverteilung gel&t. Dann wird eine allgemeine Lijsung fiir Betriebsweisen, bei denen die 
Anfangsbedingungen nicht mehr beriicksichtigt werden, vorgeschlagen. 

Einige Kurven werden fiir einfache Bedingungen angegeben, wie z.B. Delta-, Sprung- und 
Anstiegsfunktion (fiir das Anfangswertproblem) und periodisch sinusftirmige Eintritts-temperatur. 

TOqHOE PEIIIEHME fiJIJI ABYX@A3HOI? MOflEJIM l-IEPEHOCA TEnJIA 
B nOP~~bIX CPEAAX M n~OTHbIX CJIOItX 

AHHOT~UH~- AHanATHvecKH kiccnenyem4 rmimwie mrvlekmxuetics ~POM~BO~~HO ~0 epebteriw TeMne- 

paTypbr Ha sxoae Ha nnHaMsKy nopscrbrx cpea H nnori4bIx cnoes. IIpeanoxena neyx+aWaa Monenb, 

y~~T~~a~maa 0THomeH~e Ten~oeMKocTe~ ~~~~KocTN H mep;~oro Te:ia. Cziarana pacc~Tp~aaeTca 
pemeiiae npe ycnoees HepasHoMepHoro pacnpenenewea TeMneparypbl a 06aebfe. 3aTc~ naexff 06mee 
pememie PJlrr pa6oqero peWiMa. npAB’Z,eHbl rpa+aru DJISI pana npOCTblX cnyqaes: WIbTa-@yHKUHn. 

cTynewsaToA w nuHeiiH0 ao3pacTatomeii (t)y~~miii, a TaKxe nepuoaK9ecKoR CsHycotlnanbHoii @YHK~~H 

U3MeHeRHII TeMncp~rypbr Ha BXOZIC. 


